tions for arbitrary small strain rates is not physical, because a different model of the medium’is required in
this case.

Moreover, in the general case it is required to solve the appropriate boundary-value problem, in which
case appreciable changes can be incurred. The conclusions obtained above can only be valid for domains in
which the characteristic space scale is much greater than the space scale of the unstable perturbations.
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A TECHNIQUE FOR THE SOLUTION OF WAVE
PROBLEMS FOR A NONLINEAR COMPRESSIBLE
MEDIUM

N. Mamadaliev and Sh. Mamatkulov UDC 539.374:534.231.1

In this article we give analytical solutions of the problems of one-dimensional and two-dimensional
stationary shock propagation in an ideal nonlinearly compressible medium under the action of sudden strong
disturbances in the form of explosive impulses. We investigate the one-dimensional nonstationary problems
of a plane and a spherical layer, and in the two-dimensional context solve the problem of the action of 2 moving
disturbance (load) on an inelastic half-plane for the case in which the velocity D of a disturbance moving along
its boundary is greater than the shock propagation velocity in the material of the half-plane. It is assumed in
all the problems that the medium at the shock is subjected instantaneously to a nonlinear load and that linear
irreversible loading takes place in the disturbed postshock region (Fig. 1). This statement of the problems
permits them to be solved by the inverse route, i.e., by specifying a definite form (velocity) for the shock sur-
face and determining the corresponding loadmg proflle at the boundary of the layer or half-plane, In this case
the motion of the medium in the unloading region is described by the wave equation in two variables, in appli-
cation to which a Cauchy problem is formulated; it is known [1] that a solution of this problem exists and is
unique. In a concrete example we examine the case in which the equation for the shock surface is given as a
second-degree polynomial in ¢ and we compare the results of the computations with results obtained on the
basis of the method of characteristics [2], which yields satisfactory agreement of all the parameters of the
medium.

The case of linear loading and unloading of the medium for the two-dimensional problem has been in-
vestigated in [3, 4]. A solution of the problem of the propagation of convergent spherical and cylindrical shocks
in an ideal inelastic medium with rigid unloading is given in [5]. The investigated problems have potential
practical applications in the study of strong disturbances in water-impregnated soils and in reservoirs.

§1. Propagation of One-Dimensional Plane and Spherical

Shocks in a Nonlinearly Compressible Medium

Let a monotonically decreasing load py(t) be applied to the boundary of a layer. As a result, a shock
wave propagates in the medium with leading edge r =R(t), behind which unloading takes place. In this case, for
the disturbed region we have equations of motion continuity, and state in the form

ot (%420 .
p(r, t) = p* + Ele — e*),
where & = 1=py/p, E= cpp At the shock r=R(t) we have relations of the form
uk(t) = e*R, p* = p* s H?, p*(f) = aue* + ape*® (R = dR/dY). (1.2)

Moscow. Tashkent. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp.
106-112, November-December, 1977, Original article submitted December 1, 1976.
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We augment the system (1.1), (1.2) with the boundary condition at r=R,
p = po(t). (1.3)

Here u is the particle velocity; p is the density; p is the pressure; € is the volume strain; v = 0, 2 refers to a
plane and a spherical layer, respectively; and the parameters referring to the shock are denofed by an asterisk.

In the case of a plane one-dimensional wave, i.e., for v =0, from the system (1.1) we deduce the equation

u 9 Pu '
@ T EE =0, (1.4
which hag a solution of the form
ulr, t) = filr — cpt) -+ fr(r + cpl), (1.5)

where the unknown functions f;(£) (i=1, 2) are determined from the boundary condition (1.3) with regard for
(1.2). As mentioned, we solve this problem by an inverse method, i.e., consider the law of propagation of the
shock r=R(t) to be given. Then all parameters of the medium, including u* () and e* (1) at the shock surface
Z, with (1.2) taken into account, are known and have the form

() _y/ A
(¢4 [ 4 RS;__,a.
e* () = Ay — - — & SR

w () = R(e* (2).

(1.6)

Thus, for the wave equation (1.4), in the sector BAZ (Fig. 2) we obtain a modified Cauchy problem with
specified parameters (1.6) on the curve AT, in which the first equation essentially takes the place of the
condition for the gradient of the velocity u*(t). Then from (1.6), taking (1.1) and (1.5) into account, we obtain
the following expressions for the determination of f,' and f,":
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filR i [ ay o
1l (t)—_—c,,t]z——z-c; A1(t)+m ) (1.7

5 [ _P_ocpiz]
r az
f2 IR (2) 4 cpt =% Al(t)—m )

where
aq
1 e s
o
Ay () = Sy — B, (8);

(1 “1)2 —
. 2 poi{’ oy
A 2 (t) = I — N .

Now taking (1.7) into account, substituting (1.5) into the first equation of (1.1), and integrating with respect
to r from r=R; to r=R(t), for the load p,(t) we obtain

R(Y) .
. Lo ¢ R(F ()
Po () =p* (1) +%{ }év RIF (2))] [Ax (F (z1)) +;i”3;%~(—zl),—1 dr-+-

R Of:_'; ep Rt (F (2,)) l
+ | R A (7 () — 22— | e
Ry

where zy,=r¥ cpt and F(zy,) is the root of the equation R(t)  cpt=z y , with respect to the time t.

In the case of a spherical wave, i.e., for v =2, we obtain from (1.1)

w5 0% 22 fou  w 0
ar r|—

e o T \E T T

which admits a solution of the form

u(r, t) = ¥ (r——cpt)—i—CD’(r%-cpt) _llJ(r-ﬂcpt)I(D(r—i-cpt), (1.8)

where the prime signifies differentiation with respect to the argument.

After certain transformations and allowance for (1.8), from (1.8) we deduce the following expressions
for the determination of $™(z,) and &™(z,):

Zg

V' (2) =¥ (Ro) + | D (&) dEy,
Re (1.9

CD”(Z.I) e ‘lp" [R (F (22)) -—CPF (22)] + ZR (F (Zz)) Al (zz) —_— 5—: _E_(_F%)(f’)ﬂz.ﬁ,

TABLE 1
: U v D
1 | ou I 11 I 1
0 —1,644 | —1,644 | 13,100 | 13,100 105 105
0,1 | —4,628 1 —1,628 | 13,025 | 13,020 103,956 103,937
0,2 | —1,610 { —1,613 | 12,944 | 12,940 102,924 102,979

0,3 | —1,597 | —1,597 | 412,861 | 12,860 101,896 101,958
0,4 | —1,581 | —1,581 | 12,780 | 12,780 100,882 100,937

0,5 | —1,565 | —1,566 | 12,699 | 12,700 99,880 99,978
0,6 | —1,550 | —1,551 | 12,621 | 12,820 98,888 99,024
0,7 | —4,535 | —1,535 | 12,543 | 12,540 97,904 98,000
0,8 | —1,519 | —1,520 | 12,466 | 12,470 96,928 97,042
0,9 | —1,505 | —1,505 | 12,390 | 12,390 95,966 96,085
1,0 | —1,490 | —1,490 | 12,314 | 12,320 95,009 95,127
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where

D(z;) = — RE(F (2:)) Ay (F (z4)) [1 +ﬂ (6—-{— I?R.- )] _

2,R (R —cp) R? RE
Lo psR . .
5 [ 55_%w+m]_
2p (R —¢5) 8, (F (21)) R3 R

PoprRe :
o AR @R +ep)

- 94 A
2, (R — ¢) A3 (F (21)) {Ag (F (Z;))[ T3

+—"li)] + & ReR +c,,)};

(1+2’:"%+
RR

R2

P "Ry), ¥ "(Ry), "R,) are determined from conditions (1.2) as t—0.

The derivation of an expression for the load py(t) in the case of a spherical wave with allowance for (1.9)
is analogous to the case of a plane wave,

§2. Propagation of a Two-Dimensional Wave in a Nonlinearly

Compressible Medium

We investigate the planar problem of motion of 2 monotonically decreasing load with supersonic velocity
D along the boundary of a half-plane, the material of which is modeled by an ideal medium having nonlinear
and plastic properties (see Fig. 1). Then a shock with a curvilinear surface Zp will propagate in the half-plane,
the medium at the shock is loaded by assumption, and unloading takes place behind the shock. In this case,
at the surface Zp we obtain the following from the condition of conservation of mass and momentums:

pot = p* (a —v,), poavy = p*, v =0 (a=Dsina). (2.1)

Inasmuch as the loading profile is assumed to remain invariant in the course of shock propagation, the
problem is stationary, and in the unloading zone we have the following equations in the moving coordinate
system £ =Dt+ x, n=y:

du 1 9p v 1 op _
Prtem =0 Pt =0 02
ap ou v\ _ *
Do=+elz 'l"_aﬁ) = 0.
The boundary condition has the form
for 1 = 0,a0d § 22 0,p = F(E), (2.3)

where f(£) is a known monotonically decreasing function; vf,k- , Vn are the tangential and normal components of
the velocity of the medium toward the shock Z,; u, v are the projections of the velocity onto the ¢ and 1 axes;
and « is the angle of inclination of the shock surface Zn relative to the boundary of the half-plane.

To solve the problem we substitute the first equation of (2.2) into the third. Then for the velocity potential
@ we obtain the wave equation
a2 &% D2
pﬁ%-——aﬁ‘}’-=0 (M”:—z‘—*i), (2.4)

which for D> % has a solution of the form
o8, ) = f5(E — um) + fu(€ + um).

If a definite configuration is imparted to Z,,, then the velocity components u, v of the medium are represented
as follows for n=n(f) with regard for (2.1):

. _g%g_ — — Dsin*a () [-‘.’-‘é?- sin®a (E) — %ﬂ,
(2.5).

v=-z—n=Dsina(§)cosoc(§)F-§ Sinza(E)—--g-:-],
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where 7(¢) is the equation for the shock surface Z,,. Hence, in the case of a two-dimensional wave, inside
the curvilinear sector {0OZ, (Fig. 3) for (2.4) in conjunction with (2.5), as in Sec. 1, we obtain a Cauchy prob-
lem, and for the determination of fi(zi) we have the expressions

D f ®a P, {1t B EalF, )P () ,

fi(z) = F & o5 (AT a[F, (5)]P i (2.6)

o
in which

@, (z) = (B2 — S tet 17, (5)] — L

Fi(zj) (i=3, 4) is the root of the equation grun() = z; with respect to £, the upper sign being taken in (2.6) in
the case i=3. We point out that in the inverse statement of the problem, i.e., with the shock surface specified,
condition (2.3) provides an expression for the determination of the loading profile f(£).

Thus, on the basis of (2.5) and (2.6) we have obtained a solution for the problem of propagation of a two-
dimensional nonlinear wave in a half-plane. If we substitute that solution into (2.3), in principle we should
obtain a decaying loading profile with a sharp leading edge at the coordinate origin and unloading of the medium
should take place in the disturbed zone. : .

An analysis of the velocity and pressure equations obtained above, together with the results of computa~
tions, shows that the unloading process can be achieved if the shock velocity decays with depth into the half-
plane.

We note that a similar inverse approach has been applied to the problem of an unloading wave [6].

To illustrate the method we consider the case in which Zp is specified by a second-degree polynomial,
i.e.,

n(E) =tga b —5 & @.7)

The results of calculations by the analytical method with regard for (2.7) for tan @, =0.1255, b=0.86 - 1073 and
by the method of characteristics [2] are summarized in Table 1, in which I refers to the numerical method of
characteristics and Il to the analytical method. Figure 4 gives curves of the pressure and velocity along the
shock 2, along the boundary of the half-plane for the case b=0.86" 1073 (curve 1), 0.86 - 1072 (curve 2). It

is evident from Table 1 that the results obtained by both methods exhibit satisfactory agreement and the
loading profile f(£) found by the inverse method is monotonically decreasing along ¢. It is noted in Fig. 4 that
the pressure p* and the velocity components u*, v* along the shock 2, decay linearly with depth into the
half-plane; in the case b=0.86+107% the decay of the indicated quantities is more rapid than for b=0.86 1073
The computations show that all the parameters of the medium, including the pressure for n=0 along ¢ (at the
boundary of the half-plane), decay differently as a function of the values of the coefficient b. In the case b=
0.86 - 1072 this process turns out to be more rapid and nonlinear. Hence, if the shock velocity decays compara-
tively rapidly with depth into the half-plane, the parameters of the medium, the pressure in particular, will
also decay rapidly along the boundary of the half-plane. But the process of decay of the parameters of the
medium along the boundary n= 0 is faster than at the shock.

In summary, we have presented an inverse analytical method for the solution of one~ and two-dimensional
stationary problems in the case of strong impulsive disturbances with regard for the nonlinear plastic strain
of an ideal inelastic medium. In the case @,=0 the results of Sec. 2 agree with the results obtained by Kapust-
yangkii [4] on the basis of the Mellin transform.
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STRUCTURE OF ELASTIC DISCONTINUITIES
ON SHOCK PROFILES IN VISCOELASTIC
MEDIA

N. S. Kozin UDC 534.222.22

Godunov and Kozin [1] have investigated the structure of shock waves in a viscoelastic medium character-
ized by a tangential-stress relaxation time 7 and a special type of elastic energy equation for the medium.
The present author [2] has formulated inequality-type constraints for the elastic energy, which are sufficient
conditions for the shock-structure problem with a specificed particle velocity and a structure of the form in
[1] to have a unique solution. The indicated shock structure has the singular attribute that for wave velocities
greater than the velocity of sound the wave profile suffers a discontinuity, which corresponds to a jump-type
variation in the elastic constants of the medium. Mathematical relations at the discontinuity have been derived
in [1] from heuristic considerations, and to justify the selected type of relations it is necessary to formulate
a small dissipation mechanism that would produce shock "smearing® by an amount of the order of the char-
acteristic dissipation scale. The dissipation mechanism introduced in the present study is viscous friction
with a small viscosity coefficient p; it is shown that under the constraints imposed in [2] on the equations of
state positive ¢ corresponds to a unique continuous solution of the shock-structure problem. It is also shown
that as u tends to zero, the solution of the "shock-zmearing® problem tends to the solution of the problem in
[1, 2]. Inasmuch as these tendencies are nonuniform in the case of supersonic shock types, the limit solution
contains a mathematical discontinuity satisfying the shock relations [1].

§1. Conditions on the Elastic Energy Equation

Let us consider a homogeneous isotropic medium with internal energy density per unit mass given by
the equation

E = E(“: B, V. S).“ (1-1)

in which E is a symmetric function of the parameters «, 8, v, which represent the logarithms of the relative
elongations ky, k,, k3 along the principal strain axes, and S is the entropy density per unit mass. Following
2], we assume that expression (1.1) satisfies the inequalities

r =22 >0, r=(%§_-"a§)/(a—ﬁ)>0; (1.2)
e=2E_ 20, 1=22 <o (1.3)
g =28 328 1298 <, az—_—c2+%<§§%—%§) 0, (1.5)

as well as the inequalities obtained from (1.2)~-(1.5) by cyclic substitution of indices.

§2. One-Dimensional Equations

The system of differential equations describing the motion of a viscoelastic medium parallel to the x
axis in space (x, y, z) has the form

Krasnoyarsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 112-118,
November-December, 1977. Original article submiited November 1, 1976.
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