
tions for a rb i t ra ry  small strain rates is not physical, because a different model of the medium'is required in 
this case. 

Moreover,  in the general case it is required to solve the appropriate boundary-value problem, in which 
ease appreciable changes can be incurred. The conclusions obtained above can only be valid for domains in 
which the character is t ic  space scale is much grea ter  than the space scale of the unstable perturbations. 
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A T E C H N I Q U E  FOR T H E  S O L U T I O N  OF WAVE 

P R O B L E M S  F O R  A N O N L I N E A R  C O M P R E S S I B L E  

M E D I U M  

N. M a m a d a l i e v  a n d  Sh.  M a m a t k u l o v  UDC 539.374:534.231.1 

In this ar t icle  we give analytical solutions of the problems of one-dimensional and two-dimensional 
stationary she ck propagation in an ideal nonlinearly compressible medium under the action of sudden strong 
disturbances in the form of explosive impulses. We investigate the one-dimensional nonstationary problems 
of a plane and a spherical layer,  and in the two-dimensional context solve the problem of the action of a moving 
disturbance (load) on an inelastic half-plane for the case in which the velocity D of a disturbance moving along 
its boundary is g rea te r  than the shock propagation velocity in the material  of the half-plane. It is assumed in 
all the problems that the medium at the shock is subjected instantaneously to a nonlinear load and that linear 
i r r evers ib le  loading takes place in the disturbed postshock region (Fig. 1). This statement of the problems 
permits  them to be solved by the inverse route, i.e., by specifying a definite form (velocity) for the shock sur-  
face and determining the corresponding loading profile at the boundary of the layer or half-plane. In this case 
the motion of the medium in the unloading region is described by the wave equation in two variables, in appli- 
cation to which a Cauchy problem is formulated; it is known [1] that a solution of this problem exists and is 
unique. In a concrete example we examine the case in which the equation for the shock surface is given as a 
second-degree polynomial in ~ and we compare the resul ts  of the computations with results  obtained on the 
basis of the method of character is t ics  [2], which yields satisfactory agreement of all the parameters  of the 
medium. 

The case of linear loading and unloading of the medium for the two-dimensional problem has been in- 
vestigated in [3, 4]. A solution of the problem of the propagation of convergent spheri cal and cylindrical shocks 
in an ideal inelastic medium with rigid unloading is given in [5]. The investigated problems have potential 
practical  applications in the study of strong disturbances in water-impregnated soils and in reservoi rs .  

w ! .  P r o p a g a t i o n  o f  O n e ' D i m e n s i o n a l  P l a n e  a n d  S p h e r i c a l  

S h o c k s  i n  a N o n l i n e a r l y  C o m p r e s s i b l e  M e d i u m  

Let a monotonically decreasing load p0(t) be applied to the boundary of a layer.  As a result,  a shock 
wave propagates in the medium with leading edge r =R(t), behind which unloading takes place. In this case, for 
the disturbed region we have equations of motion, continuity, and state in the form 

0, ~ 0~=0 ,  o p +  (0u ~ )  
0-'t" +-P- a7 ~-  p --~ -{-- -  =0 ,  (1.1) 

p(r ,  t) = p*  -1- E(8  - -  e*) ,  

where e = 1 - p o / p ~  E = c 2 p At the shock r =R(t) we have relations of the form 
P " 

u*( t )  = s*/~, p* = p*s*/~ ~, p*( t )  = a l e *  + ~.,s *~ ( i t  = dR~dr). (1.2) 

Moscow. Tashkent. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 
106-112' November-December,  1977. Original art icle submitted December 1, 1976. 
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We augment the sy s t em (1.1), (1.2) with the boundary condition at  r =R 0 

p = po(t). (1.3) 

Here  u is the par t i c le  velocity;  p is the density; p is the p r e s su re ;  e is the volume strain;  u =0, 2 r e f e r s  to a 
plane and a spher ica l  layer ,  respect ively;  and the p a r a m e t e r s  r e f e r r i n g  to the shock a re  denoted by an as te r i sk .  

In the case of a plane one-dimensional  wave, i .e . ,  for v =0, f rom the sys t em (1.1) we deduce the equation 

9~u _2 9 ~u 
o~'-'-T - - '  ~p -FFr = O, (1.4} 

which has a solution of the form 

uCr, 0 = h(r - c~O + ?~(r + opt), (1.5) 

where  the unknown functions f~(~) (i= 1, 2) a re  de termined f rom the boundary condition (1.3) with r ega rd  for 
(1.2). As mentioned,  we solve this  p rob lem by an inverse  method, i .e . ,  consider  the law of propagation of the 
shock r =R(t) to be given. Then all  p a r a m e t e r s  of the medium, including u* it) and a* (t) at the shock surface  
Z ,  with (1.2) taken into account,  a r e  known and have the fo rm 

u* (t) - - / ~ ( 0 ~ *  (0. (1.6) 

Thus ,  for the wave equation (1.4~, in the sec tor  BAZ (F~g. 2) we obtain a modified Cauchy problem with 
specif ied p a r a m e t e r s  (L6) on the curve AZ, in which the f i r s t  equation essent ia l ly  takes  the place of the 
condition for  the gradient  of the ve loc i ty  u* (t). Then f rom (1.6), taking (1.1) and (1.5) into account,  we obtain 
the following express ions  for the de terminat ion  of fl' and f2': 
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w h e r e  

 ohl 
f~ ltl  (t) - cpt] = 2~ A~ (t) + A, (t) J' 

�9 ~ ~ 
h [R (t) + %t] = -~p A~ (t) A, (0 ' 

( 1 - - ~ )  A,,. (t); A1 (t) = 2 

(1 o:,'~2 

Az (t) = 4 a~ 

(1.7) 

Now taking (1.7) into account ,  subs t i tu t ing  (1.5) into the f i r s t  equat ion of(1.1) ,  a n d i n t e g r a t i n g w i t h  r e s p e c t  
t o  r f r o m  r = R  0 to  r =R(t) ,  f o r  the load  p0(t) we  obtain  

(71 [ Po(t)=p*(t)+-~ RIF(z~)I A l ( F ( z l ) ) - 4 ~ .  " h " ~ t 7  j d r , - p - .  

-,o [ P--'%D(F(~,))] } 
+ ,f R[F(z~)] A~(F(z~)) a~ dr  Af~ (F (zt)) 

R ,  

w h e r e  zl,  2 = r ~  Cpt and F(zl ,  2) is  the roo t  of  the  equat ion R(t) § c p t = z  1,2 with r e s p e c t  to the t i m e  t. 

In  the  c a s e  o f  a s p h e r i c a l  wave ,  i .e . ,  fo r  v = 2, we obtain  f r o m  (1.1) 

which  admi t s  a so lu t ion  o f  the  f o r m  

u (r, t) -- 

0 2 u  2 ~ 2 u  
#t ~ - -  cp 

•" (r - -  Opt) -~ (~P" (r -~- Cpt) - -  • (r ~ Vpt;) -{- (~ (r -~- Opt) ( 1 . 8 )  
r r 2 

w h e r e  the p r i m e  s ign i f i e s  d i f fe ren t i a t ion  with r e s p e c t  to  the a r g u m e n t .  

Af t e r  c e r t a i n  t r a n s f o r m a t i o n s  and a l lowance  for  (1.8), f r o m  (1.6) we deduce the fol lowing e x p r e s s i o n s  

fo r  the d e t e r m i n a t i o n  o f  t f ( z  1) and ~"(z2):  
zl 

*" (zl) = ~P" (R0) + .f (I) (~1) d~l, 
Ri 

O "  (=D = - r  [R (F (z~)) - -  cpF (z~)! + 2R (F (z~)) A1 (zd - -  - -  Po R (F (z~)) ~ (F (z~)) 
a 2 ~ (z.) 

(1.9) 

T A B L E  i 

0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,0 

--t,644 
--t,628 
--i,0i0 
--1,597 
--1,58i 
--1,565 
--1,550 
--t,535 
--1,519 
- -  I, 505 
--t,490 

II 

--t,644 
--t,628 
--i,6t3 
--1,597 
--1,581 
--1,566 
--1,551 
--1,535 
- -  t ,520 
--1,505 
--1,490 

I" I 

t3,100 
13,025 
t2,944 
12,861 
t2,780 
t2,699 
12,621 
12,543 
12,466 
12,390 
t2,3i4 

II 

t3,i00 
t3,020 
12,940 
12,860 
t2,780 
i2,700 
12,620 
12,540 
12,470 
t2~390 
t2,320 

105 
103,956 
102,921 
101,896 
100,882 
99,880 
98,888 
97,904 
96,928 
95,966 
95,009 

II 

105 
I03,937 
i02,979 
I01,958 
100,937 
99,978 
99,021 
98,000 
97,042 
96,085 
95,127 
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where 

[ ( +"?..]1 (z~) = - -  ~ (~ (~)) A~ (F (~)) t + - -  6 
~%~ (h - %) h~ ~ ii ] j  - 

~h~i i  [ ~ii %(h+%)]  
- ~" 2 + - - : -  

2% (h - %) a, (F (~)) n, h~ 

P~ ' { a ,  [ (2hA-Cp) ( t+2_ .= . .  _}./)' 

2Cp (t~-- vp) A~ (F (z~)) hl (F (zl)) 2 -~ R RR 

h~" ) ]  + 90 ~{(2R +%)}; 
+ h ' ~  

r '(R0) , r "(R0) , 6qR 0) are determined from conditions (L2) as t ~ 0 .  

The derivation of an expression for the load p0(t) in the case of a spherical wave with allowance for (1.9) 
is analogous to the case of a plane wave. 

w 2 .  P r o p a g a t i o n  o f  a T w o - D i m e n s i o n a l  W a v e  in  a N o n l i n e a r l y  

C o m p r e s s i b l e  M e d i u m  

We investigate the planar problem of motion of a monotonically decreasing load with supersonic velocity 
D along the boundary of a half-plane, the material  of which is modeled by an ideal medium having nonlinear 
and plastic properties (see Fig. 1). Then a shock with a curvilinear surface ~p will propagate in the half-plane, 
the medium at the shock is loaded by assumption, and unloading takes place behind the shock. In this case, 
at the surface Zp we obtain the following from the condition of conservation of mass and momentum: 

Poa=p*(a--v~), poav*~=p*, v.~:O ( a=Ds ina ) .  (2.1) 

Inasmuch as the loading profile is assumed to remain invariant in the course of shock propagation, the 
problem is stationary, and in the unloading zone we have the following equations in the moving coordinate 
system ~ =Dt+ x, ~? =y: 

Ou ~ t 8p Ov ~ I Op ~ 0 ,  D-~-~ _ ~  =0, D ~  , -; 0-~ 
op [Ou _L at,'~= (2.2) 

D ~ + p - ~ \  , ~n) 0. 

The boundary condition has the form 

for ~] ~- 0, and ~ t> 0,p = f(~), (2.3) 

where f(~) is a known monotonically decreasing function; v~, v~ are the tangential and normal components of 
the velocity of the medium toward the shock Ep; u, v are the projections of the velocity onto the ~ and ~ axes; 
and ~ is the angle of inclination of the shock surface Zp relative to the boundary of the half-plane. 

To solve the problem we substitute the first  equation of (2.2) into the third. Then for the velocity potential 
we obtain the wave equation 

~20a(P O~" ( D2 ) 
- - ~ - - - - 0  ~ 2 = _ _ _ i  (2.4) 

~ 

which for D> Cp has a solution of the form 

~(~, ~) = f~(~ - ~ )  + f~(~ + ~) .  

If a definite configuration is imparted to Zp, then the velocity components u, v of the medium are represented 
as follows for V = V(~) with regard for (2.1): 

u ---- ~-  - -  D s in  S a (~) [ p0D~ s in  S (Z (~) - -  a i  

[ ~ v-----~8~ = D s in  a (~) cos a (~) p0D2as sin2 a (~) - -  - ~  , 

(2.5) 
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where  ~/(}) is the equation for the shook sur face  Xp. Hence, in the case of a two-dimensional  wave, inside 
the curv i l inear  sec to r  }Or, p (Fig. 3) for (2.4) in conjunction with (2.5), as in Sec. 1, we obtain a Cauchy p rob-  
lem,  and for  the de terminat ion  of fi(zi) we have the express ions  

zi 
D y tg a [F l (zt) l {t + I~ tg a [F, (zi)l} q), (z,) dzi, (2 .6)  

in which 

r (z,) = { poD' ~ tg~ a [F~ (z,)] - -=~" 

Fi(z i) ( i=3,  4) is the root  of the equation ~-u~l(~)= z~ with respec t  to ~, the upper  sign being taken in (2.6) in 
the case i =3. We point out that in the inverse  s ta tement  of the problem,  i .e. ,  with the shock surface  specified,  
condition (2.3) provides  an express ion  for  the de terminat ion  of the loading prof i le  f(~). 

Thus,  on the basis of  (2.5) and (2.6) we have obtained a solution for the prob lem of propagation of a two- 
dimensional  nonlinear  wave in a half-plane.  If  we substi tute that solution into (2.3), in pr inciple  we should 
obtain a decaying loading prof i le  with a sharp  leading edge at  the coordinate origin and unloading of the medium 
should take  place in the dis turbed zone. 

An analys is  o f  the ve loc i ty  and p r e s s u r e  equations obtained above, together  with the resu l t s  of computa- 
tions, shows that  the unloading p roce s s  can be achieved if  the shock veloci ty  decays with depth into the half-  
plane. 

We note that a s imi la r  inverse  approach has been applied to the problem of an unloading wave [6]. 

To i l lus t ra te  the method we consider the case in which Zp is specif ied by a second-degree  polynomial,  
i.e., 

11 (~) = tg a .  ~ - - ~  ~ .  (2 .7)  

The resu l t s  of calculations by the analyt ical  method with r ega rd  for (2.7) for tan s 0 = 0.1255, b=0.86 �9 10 -3 and 
by the method of cha rac t e r i s t i c s  [2] a re  summar i zed  in Table  1, in which I r e f e r s  to the numer ica l  method of 
cha rac t e r i s t i c s  and II to the analyt ical  method. Figure  4 gives curves  of the p r e s s u r e  and veloci ty along the 
shock Zp along the boundary of the half-plane for  the case b =0.86" 10 -3 (curve 1), 0.86 " 10 -2 (curve 2). It 
i s  evident f rom Table  i that the resu l t s  obtained by both methods exhibit  sa t i s fac tory  ag reemen t  and the 
loading prof i le  f(}) found by the inverse  method is monotonical ly decreas ing  along ~. It is noted in Fig. 4 that 
the p r e s s u r e  p* and the ve loc i ty  components u* ,  v* along the shock Zp decay l inear ly  with depth into the 
half-plane;  in the case b=0.86 �9 10 -2 the decay of the indicated quantit ies is more  rapid than for b=0.86 �9 10 -3. 
The computations show that  all the p a r a m e t e r s  of the medium, including the p r e s s u r e  for  V =0 along ~ (at the 
boundary of the half-plane) ,  decay di f ferent ly  as a function of the values  of the coefficient  b. In the case b = 
0.86* 10 -2 this p r o c e s s  tu rns  out to be more  rapid and nonlinear.  Hence, if  the shock veloci ty  decays compara-  
t ive ly  rapidly with depth into t h e  half-plane,  the p a r a m e t e r s  of the medium, the p r e s s u r e  in par t icu la r ,  will 
also decay rapidly along the boundary of the half-plane.  But the p rocess  of decay of the p a r a m e t e r s  of the 
medium along the boundary V = 0 is f a s t e r  than at  the shock. 

In summary ,  we have p resen ted  an inverse  analyt ical  method for  the solution of one-  and two-dimensional  
s ta t ionary  p rob lems  in the case of s t rong impulsive dis turbances  with r ega rd  for the nonlinear p las t ic  s t ra in  
of an ideal inelas t ic  medium. In the case ~2 = 0 the resu l t s  of Sec. 2 ag ree  with the resu l t s  obtained by Kapust-  
yanskii  [4] on the basis  of  the MeIlin t r an s fo rm .  
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S T R U C T U R E  O F  E L A S T I C  D I S C O N T I N U I T I E S  

ON S H O C K  P R O F I L E S  I N  V I S C O E L A S T I C  

M E D I A  

N .  S. K o z i n  UDC 534.222.22 

Godunov and Kozin [1] have  inves t iga ted  the s t ruc tu re  of shock waves  in a v i s c o e l a s t i c  medium c h a r a c t e r -  
ized by a t a n g e n t i a l - s t r e s s  re laxat ion  t ime ~- and a spec ia l  type of e las t ic  energy  equation for  the medium.  
The p r e s e n t  author  [2] has  formula ted  inequal i ty- type  cons t ra in ts  for  the e las t i c  energy ,  which a r e  sufficient 
conditions for  the s h o c k - s t r u c t u r e  p r o b l e m  with a speci f icd  par t i c le  ve loc i ty  and a s t ruc tu re  of the fo rm in 
[1] to have a unique solution. The indicated shock s t ruc tu re  has the s ingular  a t t r ibute  that  for wave ve loc i t ies  
g r e a t e r  than the ve loc i ty  of sound the wave prof i le  su f fe r s  a discontinuity,  which co r r e sponds  to a jump- type  
va r i a t ion  in the e las t i c  constants  of  the medium.  Mathemat ica l  re la t ions  at the discontinui ty have been der ived 
in [1] f r o m  heu r i s t i c  cons idera t ions ,  and to just i fy the se lec ted  type of re la t ions  it is n e c e s s a r y  to formula te  
a sma l l  d i ss ipa t ion  m e c h a n i s m  that  would produce  shock " s m e a r i n g "  by an amount  of the o rde r  of the c h a r -  
a c t e r i s t i c  d iss ipa t ion  sca le .  The d iss ipa t ion  m e c h a n i s m  introduced in the p r e sen t  study is v i scous  fr ict ion 
with a sma l l  v i s c o s i t y  coefficient p ; i t  is shown tha t  under  the cons t ra in ts  imposed  in [2] on the equations of 
s ta te  pos i t ive  :~ co r r e sponds  to a unique continuous solution of the s h o c k - s t r u c t u r e  p rob lem.  It  is a lso  shown 
that  as  g tends to ze ro ,  the solution of the " s h o e k - z m e a r i n g "  p rob lem tends to the solution of the p r o b l e m  in 
[1, 2]. Inasmuch  as these  tendencies  a r e  nonuniform in the case of superson ic  shock types ,  the l imi t  solution 
contains a m a t h e m a t i c a l  discontinui ty sa t i s fy ing t h e  shock re la t ions  [1]. 

w C o n d i t i o n s  on  t h e  E l a s t i c  E n e r g y  E q u a t i o n  

Let  us consider  a homogeneous  i so t rop ic  med ium with in ternal  ene rgy  densi ty pe r  unit m a s s  given by 
the equation 

E = Z(~, f~ V, s ) ,  (1.1) 

in which E is  a s y m m e t r i c  function of the p a r a m e t e r s  a ,  fl, T,  which r e p r e s e n t  the loga r i thms  of the re la t ive  
elongations kl, k2, k 3 along the p r inc ipa l  s t r a in  axes ,  and S is the en t ropy densi ty  p e r  unit m a s s .  Following 
[2], we a s s u m e  that  e x p r e s s i o n  (1.1) s a t i s f i e s  the inequal i t ies  

OE ( OE OE ~ I: 
r = W  >0 ,  r =  -X~--7~:) I ,~- -~)>0;  (1.2) 

c2 a2E OE a~E aa 2 -~- > 0 ,  I = ~a~zas < 0 ;  (1.3) 

7~.-a~z o2E o"-E (oE OE) 0/.5~ " 
ocr o~ o~o~  "~ o:~ ~ 0; (1.4) 

(1.5) 
03E 02E --}-20E = + 2 [ O~E 02E ) 

q=--~-~--3--b-  ~ - ~ - < 0 ,  a ~ c 2 -5"t,Yff~'~ 0~ > 0 ,  

as  well  as the inequal i t ies  obtained f r o m  (1.2)-(1.5) by cycl ic  substi tut ion of indices.  

w 2.  O n e - D i m e n s i o n a l  E q u a t i o n s  

The s y s t e m  of d i f fe rent ia l  equations desc r ib ing  the motion of a v i scoe las t i c  med ium para l l e l  to the x 
axis  in space  (x, y, z) has  the fo rm 
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